Molecular Orbital Approach to Bonding

Chemistry 362; spring 2019
Marcetta Y. Darensbourg, Professor
Xuemei Yang, Graduate Assistant
Kyle Burns, Graduate Assistant

The following slides were modified from a gift from Professor Martyn Poliakoff Of the Department of Chemistry in Nottingham, England. Tom Poliakoff also used these slides and prepared them, to my knowledge. You might also check The MIT open courseware lecture to refresh your memory of molecular orbitals.

MIT Open Courseware lecture
https://www.youtube.com/watch?v=|laa-iEYDLI
HF
https://www.youtube.com/watch?v=estiedAIXII
$\mathrm{B}_{2} \mathrm{H}_{6}$
https://www.youtube.com/watch?v=GD5CrjyAKx4
http://www.chemtube3d.com/orbitalsCO.htm

Bond Dissociation Energies

Can you account for these trends? Yes, you can.

		Average Bond Dissociation Energies, $D(\mathrm{~kJ} / \mathrm{mol})^{\text {a }}$							
$\mathrm{H}-\mathrm{H}$	$436^{\text {a }}$	$\mathrm{C}-\mathrm{H}$	410	$\mathrm{N}-\mathrm{H}$	390	$\mathrm{O}-\mathrm{H}$	460	F-F	$159{ }^{\text {a }}$
$\mathrm{H}-\mathrm{C}$	410	$\mathrm{C}-\mathrm{C}$	350	$\mathrm{N}-\mathrm{C}$	300	$\mathrm{O}-\mathrm{C}$	350	$\mathrm{Cl}-\mathrm{Cl}$	$243{ }^{\text {a }}$
$\mathrm{H}-\mathrm{F}$	$570^{\text {a }}$	$\mathrm{C}-\mathrm{F}$	450	N -F	270	$\mathrm{O}-\mathrm{F}$	180	$\mathrm{Br}-\mathrm{Br}$	$193{ }^{\text {a }}$
$\mathrm{H}-\mathrm{Cl}$	$432^{\text {a }}$	$\mathrm{C}-\mathrm{Cl}$	330	$\mathrm{N}-\mathrm{Cl}$	200	$\mathrm{O}-\mathrm{Cl}$	200	I-I	$151{ }^{\text {a }}$
$\mathrm{H}-\mathrm{Br}$	$366^{\text {a }}$	$\mathrm{C}-\mathrm{Br}$	270	$\mathrm{N}-\mathrm{Br}$	240	$\mathrm{O}-\mathrm{Br}$	210	$5-\mathrm{H}$	310
$\mathrm{H}-\mathrm{I}$	$298{ }^{\text {a }}$	$\mathrm{C}-\mathrm{I}$	240	N -I	-	$\mathrm{O}-\mathrm{I}$	220	$\mathrm{S}-\mathrm{Cl}$	250
$\mathrm{H}-\mathrm{N}$	390	$\mathrm{C}-\mathrm{N}$	300	$\mathrm{N}-\mathrm{N}$	240	$\mathrm{O}-\mathrm{N}$	200	$\mathrm{S}-\mathrm{Br}$	210
$\mathrm{H}-\mathrm{O}$	460	$\mathrm{C}-\mathrm{O}$	350	$\mathrm{N}-\mathrm{O}$	200	$\mathrm{O}-\mathrm{O}$	180	S-S	225
$\mathrm{H}-\mathrm{S}$	340	$\mathrm{C}-\mathrm{S}$	260	$\mathrm{N}-\mathrm{S}$	-	$\mathrm{O}-\mathrm{S}$	-		

Multiple covalent bonds
$C=C$
611
$\mathrm{C} \equiv \mathrm{C}$
835
$\mathrm{C}=\mathrm{O} \quad 732$
$\mathrm{O}=\mathrm{O} \quad 498^{\mathrm{a}}$
$\mathrm{N} \equiv \mathrm{N} \quad 945^{\mathrm{a}}$
${ }^{\text {a }}$ Exact value

More Bond Dissociation Energies

Silicon

$\mathrm{Si}-\mathrm{Si}$	$327(10)$
$\mathrm{Si}-\mathrm{Br}$	$343(50)$
$\mathrm{Si}-\mathrm{C}$	$435(21)$
$\mathrm{Si}-\mathrm{Cl}$	$456(42)$
$\mathrm{Si}-\mathrm{F}$	$540(13)$
$\mathrm{Si}-\mathrm{H}$	$298.49(46)$
$\mathrm{Si}-\mathrm{I}$	$339(84)$
$\mathrm{Si}-\mathrm{N}$	$439(38)$
$\mathrm{Si}-\mathrm{O}$	$798(8)$
$\mathrm{Si}-\mathrm{S}$	$619(13)$
$\mathrm{Si}-\mathrm{Se}$	$531(25)$
$\mathrm{H}_{3} \mathrm{Si}-\mathrm{SiH}_{3}$	$339(17)$
$(\mathrm{CH})_{3} \mathrm{Si}_{3}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$	339
$(\mathrm{Aryl})_{3} \mathrm{Si}-\mathrm{Si}(\operatorname{aryl})_{3}$	$368(31)$
$\mathrm{Si}-\mathrm{Te}$	$506(38)$

Video : Oxygen

http://www.periodicvideos.com/videos/008.htm

Element	$1 s$	$2 s$	$2 p$	$3 s$	$3 p$	$4 s$	$4 p$
H	13.6	-	-	-	-	-	-
He	24.6	-	-	-	-	-	-
Li	-	5.4	-	-	-	-	-
Be	-	9.3	-	-	-	-	-
B	-	14.0	8.3	-	-	-	-
C	-	19.4	10.6	-	-	-	-
N	-	25.6	13.2	-	-	--	-
O	-	32.3	15.8	-	-	-	-
F	-	40.2	18.6	-	-	-	-
Ne	-	48.5	21.6	-	-	-	-
Na	-	-	-	5.1	-	-	-
Mg	-	-	-	7.6	-	-	-
Al	-	-	-	11.3	5.9	-	-
Si	-	-	-	14.9	7.7	-	-
P	-	-	-	18.8	10.1	-	-
S	-	--	-	20.7	11.6	-	-
Cl	-	-	-	25.3	13.7	-	-
Ar	-	-	-	29.2	15.8	-	-
K	-	-	-	-	-	4.3	-
Ca	-	-	-	-	-	6.1	-
Zn	-	-	-	-	-	9.4	-
Ga	-	-	-	-	-	12.6	6.0
Ge	-	-	-	-	-	15.6	7.6
As	-	-	-	-	-	17.6	9.1
Se	-	-	-	-	-	20.8	10.8
Br	-	-	--	-	-	24.1	12.5
Kr	-	-	-	-	-	27.5	14.3

Source: DeKock, R. L.; Gray, H. B. Chemical Structure and Bonding; Benjamin/Cummings: Menlo Park, CA, 1980; p. 227.

Valence Bond Approach: Localized Bonds, just like Lewis Structures and VSEPR

Basis of VB approach: overlap orbitals in each bond separately. Each bond is LOCALISED between two atoms.

Molecular Orbital Approach: De-Localized Orbitals and Electrons in them \Rightarrow Energy Levels, Magnetism

In molecular orbital (MO) approach - overlap orbitals for the whole molecule bonding is therefore DELOCALISED. We will look first at DIATOMIC MOLECULES and only later move on to POLYATOMIC MOLECULES.

> MOLECULAR ORBITAL THEORY FOR DIATOMIC MOLECULES

In principle, set up Schrödinger wave equation for molecule and solve it.

Solution will involve molecular orlbitalls - similar to atomic orbitals but centred around all of the nuclei in molecule. Each defined by sets of quantum numbers, with electron probability density determined by ψ^{2}, where $\psi=$ molecular wave function.

Approximate method:

At any moment, electron near one nucleus - approximate behaviour like electron in atomic orbital for that atom. Over time - electron associated with other nuclei in molecule. Therefore construct molecular orbitals (m.o.'s) by forming:

Linear Combination of Atomic Orbitals

It is this, LCAO, method which we will use to construct m.o's.

$$
\text { Simplest example }-\mathrm{H}_{2} \text { : two } \mathrm{H} \text { atoms } \mathrm{H}_{A} \text { and } \mathrm{H}_{B}
$$

Only two a.o.'s ($1 \mathrm{~s}_{\mathrm{A}}, 1 \mathrm{~s}_{\mathrm{B}}$) to form linear combinations.
General rule:

So we can only construct 2 m.o.'s for $\mathrm{H}_{\mathbf{2}}$ - and these are:

$$
\psi_{\mathrm{b}}=1 \mathrm{~s}_{\mathrm{A}}+1 \mathrm{~s}_{\mathrm{B}} \text { and } \psi_{\mathrm{a}}=1 \mathrm{~s}_{\mathrm{A}}-1 \mathrm{~s}_{\mathrm{B}}
$$

i.e. the sum (ψ_{b}) and the difference $\left(\psi_{\mathrm{a}}\right)$ of the constituent a.o.'s.

Consider the electron distribution in each of these:
s/s

$\mathbf{s + s} \quad$ overlap everywhere positive \rightarrow BONDING M.O.

$\mathbf{s}-\mathbf{s}$ overlap everywhere negative \rightarrow ANTI-BONDING M.O.

Bonding Interaction
Anti-Bonding Interaction

$$
\psi_{b}=1 s_{A}+1 s_{B}
$$

$$
\psi_{\mathrm{a}}=1 s_{\mathrm{A}}=1 \mathrm{~s}_{\mathrm{B}}
$$

Consider in each case the INTERNUCLEAR REGION
Probability of finding electron there is:

$$
\psi_{b}>1 s_{A}, 1 s_{B}>\psi_{a}
$$

Electron in this region attracted to BOTH nuclei, therefore most favourable position. Hence, electron in ψ_{b} will be at lower energy than in non-interacting a.o.'s, and electron in ψ_{a} will be at higher energy still.

Thus an electron in ψ_{b} will hold the nuclei together, one in ψ_{a} will push them apart.
ψ_{b} is a BONDING m.o.,
ψ_{a} is an ANTI-BONDING m.o.

Thus we can draw ENERGY LEVEL DIAGRAM for m.o.'s of $\mathbf{H}_{\mathbf{2}}$:

By aufbau \& Pauli principles - the 2 electrons go into ψ_{b} - with paired spins.

MO's for $\mathrm{H}_{\mathbf{2}}$ molecule

http://www.chemtube3d.com/orbitalsCO.htm

M.O.'s for homonuclear diatomics $\left(A_{2}\right)$ for elements of first row of the Periodic Table

For $\mathrm{Li}_{2}, \mathrm{Be}_{2}, \mathrm{~B}_{2}$ etc., more complex than for H_{2}, HHe - more available a.o.'s-1s, 2s, 2p. Are there restrictions on overlap?
(1) VALENCE electrons only - core electrons too close to nucleus, too tightly bound
(2) Most efficient overlap between orbitals of same energy, i.e. for homonuclear diatomics this means $\mathbf{2 s} / \mathbf{2 s}$, 2p/2p (for heteronuclear diatomics - see later)
(3) SYMMETRY RESTRICTIONS

These are best shown pictorially
Let us see how this works for $2 s$ and $2 p$ orbitals.

BOND ORDER

By Lewis/V.B. theory - one pair of electrons = one bond.
To be consistent, in M.O. theory, define BOND ORDER as follows:
Bond order = [(No. of electrons in bonding m.o.'s) - (No. of electrons in antibonding m.o.'s)]/2

Thus, for H_{2}, bond order $=(2-0) / 2=1 \quad$ (i.e. a single bond - as expected)

Magnetic Properties of Molecules

All electrons paired - repelled by magnetic field - DIAMAGNETIC
One or more unpaired electrons - attracted into magnetic field - PARAMAGNETIC
H_{2} is diamagnetic.

M.O.Energy Level Diagram for A_{2} ($\mathrm{A}=\mathrm{Li}, \mathrm{Be}$)

Remember: 1s orbitals effectively non-bonding,

Use Aufbau, Pauli, Hund - just as in filling atomic orbitals
Li_{2} Only two valence electrons, i.e. $\sigma_{\mathrm{s}}{ }^{2} \sigma^{*}{ }^{0}$. Bond order =1. Diamagnetic Li_{2} exists in gas phase over metallic lithium.

$$
\begin{array}{|lll}
\hline{ }^{" B e} e_{2} " & \sigma_{\mathrm{s}}{ }^{2} \sigma_{\mathrm{s}}^{*} & \begin{array}{l}
\text { Bond order }=0-\text { no net bonding } \\
\text { energy, so molecule does not exist. }
\end{array}
\end{array}
$$

Beryllium in gas phase is monatomic.

For p orbitals - three per atom. Define z -axis as molecular axis. Hence p_{z} orbitals can overlap in same way as s orbitals.

$p_{z}+p_{z}$ overlap everywhere positive \rightarrow BONDING M.O.

Bonding Interaction

$$
\psi_{h}=p_{z}+p_{z}
$$

End-to-end overtap forms $\sigma_{2}^{2} \mathrm{pz}_{2} \mathrm{MO}$

Anti-Bonding Interaction

$\Psi_{a}=p_{z}=p_{z}$
End-to-end overlap forms $\sigma^{*} 2 p_{2} M 0$

$p_{z}-p_{z}$ overlap everywhere negative \rightarrow ANTI-BONDING M.O.
p_{x}, p_{y} orbitals are perpendicular to axis, but can still interact

$p_{x}+p_{x} \quad$ overlap everywhere positive \rightarrow BONDING M.O.
Bonding Interaction

$$
\psi_{\mathrm{b}}=\mathrm{p}_{\mathrm{x}}+\mathrm{p}_{\mathrm{x}} \text { or } \psi_{\mathrm{b}}=\mathrm{p}_{\mathrm{y}}+\mathrm{p}_{\mathrm{y}}
$$

Side-to-side overlap forms $\Pi 2 p_{x}$ or MO

Need to consider all possibilities (could be needed for heteronuclear diatomics)

Anti-Bonding Interaction

$$
\psi_{\mathrm{a}}=\mathrm{p}_{\mathrm{x}}-\mathrm{p}_{\mathrm{x}} \text { or } \psi_{\mathrm{b}}=\mathrm{p}_{\mathrm{y}}-\mathrm{p}_{\mathrm{y}}
$$

Side-to-side overlap forms $\Pi^{*} 2 p_{\text {x or y }} M O$

Bonding Interaction

$$
\psi_{\mathrm{b}}=p_{\mathrm{x}}+p_{\mathrm{x}} \text { or } \psi_{\mathrm{b}}=p_{y}+p_{y}
$$

Side-to-side overlap forms $\Pi 2 p_{x \text { or y }} M O$

Anti-Bonding Interaction

$\Psi_{\mathrm{a}}=\mathrm{p}_{\mathrm{x}}-\mathrm{p}_{\mathrm{x}}$ or $\psi_{\mathrm{b}}=\mathrm{py}_{\mathrm{y}}-\mathrm{p}_{\mathrm{y}}$
Side-to-side overlap forms $\Pi^{*} 2 p_{x}$ or y $M O$

m.o.'s derived from 2p a.o.'s:

1. p_{x}, p_{y} alike in all respects except orientation, so m.o.'s derived from them must be degenerate.
2. sideways (π) overlap is less efficient than end-on (σ), so π m.o.'s less bonding than σ

M.O.Energy Level Diagram for A_{2} ($\mathrm{A}=0$)

"No mixing of $2 s$ and $2 p$ "

O_{2}
Electronic configuration: $\sigma_{s}{ }^{\mathbf{2}} \sigma^{*}{ }^{\mathbf{2}} \sigma_{\mathrm{pz}} \mathbf{2}_{\mathbf{p x}}{ }^{\mathbf{2}} \boldsymbol{\pi}_{\mathrm{py}}{ }^{\mathbf{2}} \pi^{*}{ }_{\mathrm{px}}{ }^{1} \pi^{*}{ }_{\mathrm{py}}{ }^{1}$
Note Hund's rule again! Bond order $=(8-4) / 2=2$ (double bond) and PARAMAGNETIC. V.B. theory could not explain paramagnetism.

$$
\pi_{u}(2 p)--\begin{gathered}
- \\
-\uparrow \uparrow
\end{gathered}
$$

$$
\underline{\mathbb{N}} \quad \underline{\text { iv }}
$$

捗 埌

$$
\underline{1}+\mathbb{1}
$$

$$
\underline{\mathbb{N} \downarrow} \quad \sigma_{u}^{*}(2 s)
$$

